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As we discussed in lecture on “Practical Factor Analysis,” there are several steps involved in 
completing a factor analytic study. 
 

1. Design the Study 
2. Gather the Data 
3. Choose the Model 
4. Select m, the Number of Factors 
5. Rotate the Factors 
6. Interpret the Factors and Name Them 
7. Obtain Scale Scores (if needed) 

 
All of these steps require a careful analytical approach.  In this handout, we’ll assume that a 
common factor analysis is being performed on the data that have already been gathered or made 
available. In that case, the next step is to select m, the number of common factors. 
 
Selecting m is partly science, partly art and intuition. Once m is determined, the factor analysis is 
performed using maximum likelihood, and if the resulting rotated factor pattern is sufficiently 
interpretable, the analysis can proceed. If, however, the rotated pattern does not exhibit either 
simple structure or bifactor structure, then the experimenter may be moved to try a different m, 
depending on how clearcut the statistical criteria were. 
 
This step seems straightforward, but it is hampered somewhat by the necessity to perform several 
alternative analyses. For example, there are several major approaches to deciding on a number of 
factors: 
 

1. The Scree Test 
2. The Likelihood Ratio Test 
3. The RMSEA Fit Criterion 

 
The ability to perform these analyses quickly and efficiently is built into our support routines.  In 
a similar vein, there are several major approaches to rotation: 
 

1. Orthogonal Rotation 
2. Oblique Transformation 
3. Orthogonal Bifactor Rotation 
4. Oblique Bifactor Rotation 

 
All of the above rotational techniques are performed, and the output formatted, with one of our 
advanced support functions.  Let’s see how this works. 



We’ll begin with a famous data set — the 24 Psychological Variables of Holzinger and 
Swineford.  This data set, based on a sample of 145n   independent observations, has been 
discussed in many places in the literature.  
 
The choice of the correct number of factors with these data is not as straightforward as in some 
analyses. 
 
We begin by loading the data.  Make sure the psych and plotrix libraries are loaded. We 
store the correlation matrix in a variable called R. 
 
> library(psych) 
> source( 
> 'http://www.statpower.net/Content/312/R Stuff/AdvancedFactorFunctions.txt' 
>        ) 
> R <- as.matrix(Harman74.cor$cov) 
 
Next, we generate a scree.plot of the eigenvalues.  
 
> Scree.Plot(R,main="SCREE Plot\n24 Psychological Variables Data 
(n=145)") 
 
The plot shows the eigenvalues of the correlation matrix in decreasing order. For ease of 
interpretation, a horizontal line is drawn at a height of 1.0. 
 
As mentioned in class, one examines the plot for a noticeable “scree,” a flattened area around 
1.0. Eigenvalues to the left of the scree represent components that are worth retaining, and often 
correspond to the number of useful factors in a common factor analysis as well 
 
The scree plot is somewhat ambiguous. The scree seems to start at the 5th factor, leading to a 4 
factor solution. However, the eigenvalue of the 5th principal component is slightly larger than 1. 
 



 
 
We move on to more advanced statistical criteria. 
 
> FA.Stats(R,n.factors=1:5,n.obs=145, 
> main="RMSEA Plot\n24 Psychological Variables Data  (n=145)", 
> RMSEA.cutoff=0.05) 
 
Here is the output. First we get a statistical table. 
 
     Factors Cum.Eigen Chi-Square  Df             p.value RMSEA.Pt RMSEA.Lo RMSEA.Hi 
[1,]       1    8.1354     622.91 252 0.00000000000000000 0.101100 0.091135 0.111126 
[2,]       2   10.2315     420.24 229 0.00000000000020062 0.076153 0.064595 0.087541 
[3,]       3   11.9241     295.59 207 0.00005121867331981 0.054517 0.039694 0.068100 
[4,]       4   13.4259     226.68 186 0.02239559067132135 0.038974 0.015820 0.055621 
[5,]       5   14.4511     186.82 166 0.12832636580567369 0.029513 0.000000 0.049486 

 
The chi-square statistic and its associated p-value test the hypothesis that the factor model fits 
perfectly. This hypothesis is rejected easily at the 0.05 level for 4 factors, but is not rejected for 5 
factors. According to the traditional 2  “Accept-Support” logic, this might lead to a choice of a 
5 factor solution. 
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Using fit critieria such as the RMSEA, the decision is more in doubt. With the RMSEA 
approach, one plots confidence intervals for the complexity-corrected index of model fit. This is 
discussed in great detail in the handout Measures of Fit in Structural Equation Modeling, 
available on the website in the Statistics Handouts section. 
 
The RMSEA-based approach asks, “how well does the model fit, and how precisely have we 
determined it.”  The RMSEA index is crude, and can be criticized on a number of grounds, but 
the general idea seems to be superior to the chi-square approach. We no longer require fit to be 
perfect, but rather that it be determined with a reasonable degree of precision to be good.  
 
A population RMSEA of 0.05 is considered by a number of experts to represent good fit. Some 
writers have misconstrued this to mean that a point estimate of 0.05 signifies good fit. It might, 
but under conditions of low precision (and a wide confidence interval), one might want to 
suspend judgment.  
 
Surveying the confidence intervals in the RMSEA plot on the next page, we see that the intervals 
march steadily downward, with only a slight inflection. By the 4th factor, the point estimate is 
0.039, and the confidence interval has an upper limit of 0.056. This is generally considered to be 
very good fit. Adding a 5th factor lowers the point estimate to 0.030, and the confidence interval 
includes zero (indicating a failure to reject the null hypothesis of perfect fit, i.e., RMSEA = 0, at 
the 0.05 level).  
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Classic sources and textbooks favored a 4-factor solution for the Holzinger-Swineford 24 
variables data, and Jöreskög decided on a 4-factor solution in his December 1978 Psychometric 
Society Presidential Address article in Psychometrika. 
 
Suppose we settle on 4 factors for now. The next step is to compute maximum likelihood factor 
loadings and rotate them to an interpretable structure. To make this relatively convenient for you, 
I’ve created some service functions. 
 
A key service function is MLFA, which simultaneously produces several of the most commonly 
used rotation methods, reverses the sign of the loading if appropriate, orders the factors, blanks 
out loadings less than 0.25 in absolute value, and sorts the observed variables to help make 
simple structure more obvious. By default the MLFA routine returns all the loadings to 3 decimal 
places. However, the Loadings function allows you to reformat the loadings.  
 
Included in the output are: 
 
Unrotated (Orthogonal) 
Varimax (Orthogonal) 
Promax (Oblique) 
Quartimin (Oblique) 
Bifactor (Jennrich-Bentler 2011Orthogonal) 
Bifactor (Jennrich-Bentler 2012 Oblique) 
 
Additional rotational methods will be added as requested.  
 
Here is the output from MLFA. I use the Loadings function to truncate loadings below 0.30. 
 
out <- MLFA(Correlation.Matrix=R,n.factors=4,n.obs=145,promax.m=3) 
Loadings(out,cutoff=.3,num.digits=2) 
 
I’ll skip over some of the output for efficiency. 
 
Let’s look at the varimax rotation first. 
  



 
Varimax Loadings 
------------------ 
                       Factor1 Factor2 Factor3 Factor4 
GeneralInformation      0.74                           
PargraphComprehension   0.77                           
SentenceCompletion      0.81                           
WordClassification      0.57    0.34                   
WordMeaning             0.81                           
VisualPerception                0.69                   
PaperFormBoard                  0.57                   
Flags                           0.53                   
SeriesCompletion        0.37    0.50                   
Addition                                0.83           
Code                                    0.51    0.37   
CountingDots                            0.72           
StraightCurvedCapitals          0.44    0.53           
WordRecognition                                 0.55   
NumberRecognition                               0.52   
FigureRecognition               0.41            0.53   
ObjectNumber                                    0.57   
Cubes                           0.44                   
Deduction               0.38    0.40            0.30   
NumericalPuzzles                0.38    0.44           
ArithmeticProblems      0.37            0.50    0.30   
NumberFigure                            0.34    0.46   
FigureWord                                      0.37   
ProblemReasoning        0.37    0.40            0.30   
 
               Factor1 Factor2 Factor3 Factor4 
SS loadings       3.65    2.87    2.66    2.29 
Proportion Var    0.15    0.12    0.11    0.10 
Cumulative Var    0.15    0.27    0.38    0.48 
 
Ideally, each row would have only one nontrivial loading. But we see 7 variables with 2 and 3 
variables with 3 nontrivial loadings.  
 
Next, let’s check the Promax solution. Promax is perhaps the most frequently used oblique 
rotation method, although a number of experts consider quartimin to be superior. 
 
 
 
  



Promax Loadings 
----------------- 
                       Factor1 Factor2 Factor3 Factor4 
GeneralInformation      0.76                           
PargraphComprehension   0.79                           
SentenceCompletion      0.86                           
WordClassification      0.51                           
WordMeaning             0.84                           
VisualPerception                0.78                   
PaperFormBoard                  0.66                   
Flags                           0.58                   
Addition                                0.92           
CountingDots                            0.73           
WordRecognition                                 0.62   
NumberRecognition                               0.58   
FigureRecognition               0.37            0.54   
ObjectNumber                                    0.63   
Cubes                           0.49                   
StraightCurvedCapitals          0.46    0.45           
SeriesCompletion                0.47                   
Code                                    0.46    0.31   
ArithmeticProblems                      0.43           
NumberFigure                                    0.44   
FigureWord                                      0.35   
Deduction                       0.34                   
NumericalPuzzles                0.36    0.34           
ProblemReasoning                0.34                   
 
               Factor1 Factor2 Factor3 Factor4 
SS loadings       3.26    2.82    2.28    2.01 
Proportion Var    0.14    0.12    0.09    0.08 
Cumulative Var    0.14    0.25    0.35    0.43 
 
Factor Intercorrelations 
------------------------ 
        Factor1 Factor2 Factor3 Factor4 
Factor1    1.00    0.53    0.37    0.47 
Factor2    0.53    1.00    0.43    0.52 
Factor3    0.37    0.43    1.00    0.45 
Factor4    0.47    0.52    0.45    1.00 
 
Here we see 4 variables with 2 nontrivial loadings, but none with 3 nontrivial loadings. Notice, 
however, that the 4 factors are correlated round 0.40 – 0.50, making ultimate interpretability 
somewhat more problematic. 
 
 
Next, let’s look at an orthogonal bifactor solution (it is very similar to the oblique bifactor 
solution that follows, because the factors are almost uncorrelated in the oblique solution. 
 
 



 
Orthogonal Bifactor Loadings 
---------------------------- 
                       Factor1 Factor2 Factor3 Factor4 
VisualPerception        0.68                           
Flags                   0.51                           
WordClassification      0.59    0.39                   
Code                    0.56            0.32           
CountingDots            0.56            0.43           
StraightCurvedCapitals  0.67                           
FigureRecognition       0.54                    0.31   
NumberFigure            0.57                           
Deduction               0.58                           
NumericalPuzzles        0.63                           
ProblemReasoning        0.57                           
SeriesCompletion        0.68                           
ArithmeticProblems      0.61                           
GeneralInformation      0.54    0.59                   
PargraphComprehension   0.52    0.64                   
SentenceCompletion      0.50    0.67                   
WordMeaning             0.51    0.69                   
Addition                0.48            0.72           
Cubes                   0.41                           
PaperFormBoard          0.46           -0.37           
FigureWord              0.44                           
WordRecognition         0.37                    0.45   
NumberRecognition       0.37                    0.41   
ObjectNumber            0.44                    0.44   
 
               Factor1 Factor2 Factor3 Factor4 
SS loadings       7.02    2.09    1.38    0.98 
Proportion Var    0.29    0.09    0.06    0.04 
Cumulative Var    0.29    0.38    0.44    0.48 
 
Once the general factor is extracted, The remaining factors show a simple structure. Besides the 
general factor, no variable loads above 0.30 on more than one variable, and the clusters have a 
rather clear interpretation. 
 
Now you try it.  The Thurstone data set, is a correlation matrix based on 213n   
observations.  Load it as follows: 
 
> data(Thurstone) 
 
Then factor analyze it, deciding on a number of factors and a simple structure. Justify all your 
decisions. 
 


